# Mixing Sludges & Slurries with Pulsed Jets: Some mixing theory & Test Results

Slurry Retrieval, Pipeline Transport & Plugging & Mixing Workshop January 14 - 18, 2008, Orlando, Florida.

Perry A. Meyer
Pacific Northwest National Laboratory





#### **Unsteady Jet Mixers at Hanford**

- Retrieving from storage
  - Underground, 1 2ft risers
  - Limited access for equipment
  - 2 300hp mixer pumps (baseline)

- Treating & vitrifying waste
  - Closed "black" cells
  - No maintenance for 40 years





Rotating horizontal opposed jets

Pneumatic pulsed jets

#### **Turbulent Jets**



- High Reynolds number far field
  - Constant spread angle
  - Peak & ave. velocity decrease
  - Thrust/force is constant
  - Flow rate increases (entrainment)
  - Energy decreases
  - Constant Reynolds number

$$\delta(z) = \theta z$$

$$u(z) = c_j u_j d_j / z_{u_d A}$$

$$F(z) = F_j$$

$$q(z)/q_j \sim z/d$$

$$e(z)/e_i = d/z$$

$$Re_{\delta}(z) = Re_{d}$$

#### Turbulent Jets, cont.

- Same results for impinging & attaching jets
  - Different constants
  - Wall shear stress  $\tau_w(r) \sim \rho u_j^2 (d_j/r)^2$
- True independent of nozzle cross-sectional area
- Approximately true in near-far-field transition  $z/d_j$ ,  $r/d_j = 15 30$
- Allows one to approximately obtain flow fields, fluxes, forces, etc
- Similar relations for dense jets



#### Jets as mixers

- Axial flow impeller: ND ~ uj
  - dj/T <<1 (careful about blindly applying agitator results)</li>
  - Power, thrust, and flow numbers = ~ 1
    - Much higher power than agitators for same thrust
    - Lower flow, higher head
- Highly directional
  - point them where you want them
  - Must design for thrust reaction
- Return placement
  - Can be important

#### Downward vertical jet mixers

Centered Jet(s)



$$u_T \sim u_j(d_j/T)$$

$$\Omega \sim u_i d_i / T^2$$

Jet rings(s)



$$u_{uw} \sim u_j \sqrt{N_j} (d_j / T) \times f(H / T)$$

$$t_{uw} \sim T^2 / u_j d_j \sqrt{N_j} \times f^2 (H/T)$$

#### Geometry

- Nozzle geometry
  - Cross-section: No effect in far field- only area counts
  - Convergence: extra thrust from pressure
- Stand-off
  - No effect for h/dj < 6, little effect for h/T<<1</li>
- Number of jets
  - N<sup>1/2</sup>dj momentum/thrust effect
  - T/N<sup>1/2</sup> ZOI geometric effect
- Return location
  - Can be important- Avoid short-circuiting
- Dish shape
  - Impingement angle- flow distribution
- Other internals
  - Wakes/blockages

#### **Intermittent Jets**

Dimensionless pulse time determines regime

$$N_p = t_p u_d / d$$

 $N_P < 4$  vortex ring

4 < N<sub>P</sub> vortex ring with tail

 $4 \ll N_P$  developing steady

PJMs:  $N_p = 80 - 500$ 



#### Unsteady effects on mixing/mobilization

- Would like to utilize steady mixing knowledge base
  - Can we find simple corrections for unsteady effects or are we dealing with fundamentally new phenomena?
- Must consider relative time scales
  - Flow establishment/mixing times compared with pulse time
  - Duty cycle
    - What happens when the jet is off?
  - Other time scales
    - Erosion rates
    - Settling rates
    - Etc.
- Two new parameters are introduced
  - Relative pulse volume
  - Duty cycle

#### Pulse jet mixers



- ▶ Mixing modes
  - drive
  - refill



- ► PJMs in the WTP
  - V (range)
  - N (range)
  - Pvf (range)
  - DC (range)
  - Dpjm (range)

#### Important parameters

Geometry

N number jets

Uj jet velocity (peak)

d<sub>i</sub>/T nozzle diam.

 $\Phi_p = V_p/V$  pulse size

 $DC = t_p/t_c$  duty cycle

geometry

Operational

- Waste physical configuration
  - Normal/off-normal operations
  - Uniform
  - Settled layers
- Physical & rheological properties

## Pulse Jet Mixing Studies at Battelle/PNNL

- Physical regimes
  - Transitional flow
  - unsteady
  - Non-settling/non-Newtonian
  - Settling- wide particle size & density range, agglomerates
  - Heels- cohesive/non-cohesive
  - In situ gas generation
- Mixing requirements
  - Stagnation/caverns
  - Off-bottom suspension- V<sub>JS</sub>
  - Vertical distribution
  - Gas hold-up & release behavior

- Scaled testing program
  - Simulant development
    - Physical/chemical
    - Transparent/opaque
    - 1/2/3 phase
  - Testing
    - Bench scale 40m³
    - Single & multi jets
    - simplified & prototypic geometries
  - Scale up
    - Rating, not designing
    - Similarity, physical, empirical
  - Instrumentation

#### Non-Newtonian PJM Test Program

- ► Technical basis
  - Develop scaled testing approach
  - Validate approach- limited testing at scales
- Rate existing designs
  - (3 unique designs in WTP)
- ► Improved PJM designs
- PJM/sparge hybrid designs

#### Theory of PJM Operation with Non-Newtonian Materials

- Model problem: Cavern formation
  - Initially gelled material
  - Representative of restart after mixing shutdown
  - Good mixing system will eliminate cavern
- ►Rheological model
  - Static gel formation with shear strength  $\tau_{\text{s}}$
  - Bingham plastic laminar flow rheology with yield stress  $\tau_0$  and consistency K
  - Turbulent flow characteristics determined by high shear consistency ~K

#### **Typical Pulse Jet Mixer System**





Pacific Northwest National Laboratory U.S. Department of Energy



# Cavern Formation from a Steady Jet

Turbulent wall jet

$$u(z) = c_J u_d d/z$$
  $\tau_f = C_f \rho u^2/2$ 

Force balance at static interface at  $z_C \approx H_C + T/2$   $\tau_f = \tau_s$ 

$$H_C/T = a(d/T)Re_{\tau}^{1/2} - 1/2$$

Yield Reynolds Number

$$Re_{\tau} = \rho u_d^2 / \tau_s$$

Reynolds number dependence

$$Re_d = \rho u_d d/k$$
  $C_f$ ,  $c_J = f(Re_d)$ 





Pacific Northwest National Laboratory
U.S. Department of Energy 15

#### Theory of PJM Operation in Non-Newtonian Materials

- Cavern Formation from a Steady Jet
  - Turbulent jet theory with force balance at interface predicts cavern height
- Yield Reynolds number
  - Ratio fluid force to material strength

$$Re_{\tau} = \rho u_0^2 / \tau_s$$

- Effects of pulsation
  - Ratio PJM drive time to flow establishment time

$$t_D/t_{ss} \sim V_p/d_0^3 Re_\tau$$

Predicted cavern height

$$\frac{H_c}{D_T} = a \frac{d_0}{D_T} Re_{\tau}^{1/2} \left( 1 - exp(-c \frac{V_p}{d_0^3 Re_{\tau}}) \right)^{1/2} - \frac{1}{2}$$





Non-dimensional cavern height as a function of yield Reynolds number for a single PJM in Laponite atory

# Single-PJM Cavern Tests (laponite)







## Test to Verify Scaled Testing Approach

- ►1PJM Tests
  - Simulant selection
  - Verify cavern formation theory
- ▶4PJM Tests
  - Downward firing PJMs
  - Performed at 3 scales
- **▶**Simulants
  - Laponite
    - Transparent
    - Adjustable shear strength
  - Kaolin/Bentonite Clay
    - Opaque
    - Adjustable yield stress/consistency
- ▶Test conditions
  - Rheology (20 -120 Pa)
  - Velocity (3-30 m/s)



- ▶ Types of measurements
  - Cavern height (Laponite)
  - Breakthrough velocity (clay & Laponite)
  - Upwell velocity (clay)



#### **Small Scale Test Stands**



- ▶ Battelle 1/4-scale 4 PJM Test Vessel
  - 34 in. diameter
  - 250 gallons
  - Acrylic vessel
  - Compressed air/vacuum PJM drive system
- SRNL 1/9-scale 4 PJM Test Vessel
  - 17 in. diameter
  - ~30 gallons \_
  - Acrylic vessel
  - Compressed air/vacuum PJM drive system





#### Large-Scale Test Stand at Battelle

- Battelle 336 4 PJM Test Vessel
  - ~13 ft. diameter, ~12,000 gallons
  - Steel construction
  - Prototypic AEA
     Compressed air PJM drive system





- Pulse tube prior to installation
  - 24 in. diameter
  - 2 in. conical nozzle

## **Scaling Data Comparisons**



Comparison of cavern position for tanks of 3 different scales with Laponite simulant.

### **Scaling Data Comparisons**





Comparison of surface breakthrough velocity for tanks of 3 different scales with Laponite & clay simulants.

Battelle

# Gas hold-up & release- tests at 3 scales



# **Baseline Designs**





I Cavern only



II Breakthrough, NfrozenÓzones



III Breakthrough with slow peripheral movement



IV Full turbulent mixing

# 330° 270° 1'-0³/₄" R 6" R PULSE JET MIXER (10) - REQUIRED PLAN BASE CONFIGURATION

# Improved PJM designs







# Air sparging in Bingham Plastic Slurry



# PJM/air-sparge hybrid designs





# Final Design Mixing Performance



# M3- Rating WTP Mixing Systems

- ► Rate mixing system designs for balance of WTP vessels
  - Normal operations & mixing restart
- Broad range of potential waste conditions
  - Non-cohesive (settling) solids cohesive solids
  - Wide range of solids size, density, slurry rheology
- ▶ 18 different vessel/mixing system geometries
- Primary metrics
  - Off-bottom suspension
  - Vertical solids distribution
  - Blend times
- Work in 3 phases: non-cohesive, cohesive, gas handling

#### Preliminary tests with non-cohesive solids

#### Simulants

- Glass spheres (low grade), S ~ 2.47
- 3 sizes: d<sub>s</sub> = 63-100, 150-210, 600-800μm
- 2 solids loadings:  $\phi_s = 0.005 \& 0.015$

#### Vessel geometries

- 34-in., 1/13.4-scale of HLP-22
- 12 tubes, 0.3 & 0.45-in nozzles (4 & 6-in. full scale)

#### Operational

- Pulse volume fraction  $\phi_p = 0.025 0.10$
- Duty cycle: DC = 0.18, 0.36, 0.5, 1 (steady)

#### Measurements

Ujs & peak cloud height

#### Some off-bottom suspension results









#### Correlating just-suspended velocity

Assume Zwietering values for un-tested parameters

$$Ucs = k(H/D')^{0.14}g^{0.5}(s-1)^{0.43}(D')^{1.3}$$

$$\times (d_s)^{a_5}(d_j)^{a_6}(100s\phi_s)^{a_7}(DC)^{a_8}(\phi_p/(1+\phi_p))^{a_9}$$

$$D' = D/\sqrt{N}$$

|                 | Steady | Pulsed |  |  |
|-----------------|--------|--------|--|--|
| k               | 0.78   | 0.23   |  |  |
| d <sub>s</sub>  | 0.47   | 0.26   |  |  |
| d <sub>j</sub>  | -1.3   | -1.06  |  |  |
| Sφ <sub>s</sub> | 0.23   | 0.34   |  |  |
| DC              | -      | -0.06  |  |  |
| фр              | -      | -0.18  |  |  |

#### Data correlation: off-bottom suspension





- Suggests pulsation effects small at low concentration
- Scale-up to plant conditions: design likely inadequate
  - More testing at additional scales & higher solids required

#### Cloud height data





#### **Correlating cloud-height**

- Simple energy argument
  - Energy per pulse ~ change in potential energy of solids

$$\phi_p F_H \sim \frac{\phi_s}{\phi_d}$$
  $F_H = \frac{u^2}{2(s-1)gH_c}$ 

$$\frac{H_C}{D} \sim F_D \frac{\phi_p \phi_d}{\phi_s} \qquad F_D = \frac{u^2}{2(s-1)gD}$$

Attempt correlation of the form

$$\frac{H_C}{D} \sim F_D^{a1} \phi_p^{a2} \phi_d^{a3} \phi_s^{a4} \qquad \text{include } d_s/D \text{ or } u_s/u$$

# Correlation of cloud-height data





|        | k   | U | φ <sub>s</sub> | $\phi_{\sf d}$ | d <sub>s</sub> /T | $\phi_{p}$ | DC   |
|--------|-----|---|----------------|----------------|-------------------|------------|------|
| Steady | 2.8 | 2 | -0.56          | 1.7            | -1.1              | -          | -    |
| Pulsed | 7.1 | 2 | -1.1           | 1.0            | -0.5              | 0.3        | 0.25 |

#### **Summary of findings**

- ▶ Just suspended velocity
  - Unsteady effects minor
    - DC effects negligible
    - There is evidence this breaks down at higher concentration where time to suspend > drive time
  - Similar solids size effect
  - Concentration exponent 2x
  - Effect of nozzle size as expected
  - To be sure, need more data

## Summary, cont.

- Vertical distribution
  - Strong bulk density stratification effect
  - Unsteady effects appear to dominate
    - Exponents on DC & PVF
    - Fundamental behavior
  - Weak solids size dependence:
    - Define  $U_{JH}$  ("just to H..."). Then  $U_{CH} \sim d_s^{0.25}$
  - Strong concentration effect: U<sub>CH</sub>~ φ<sub>s</sub> <sup>0.5</sup>
  - Strong pulsation effect: U<sub>CH</sub>~ φ<sub>p</sub> -0.5